تصنيف الانسكابات النفطية على أساس الصور الفضائية باستخدام تقنيات التعلم العميق

محتوى المقالة الرئيسي

Abubakar Salihu Abba
https://orcid.org/0009-0001-7537-1549
Noorfa Haszlinna Mustaffa
https://orcid.org/0000-0002-1896-4591
Siti Zaiton Mohd Hashim
https://orcid.org/0000-0001-5122-7166
Razana Alwee
https://orcid.org/0009-0009-8115-4565

الملخص

التسرب النفطي هو تسرب في خطوط الأنابيب أو السفن أو منصات النفط أو الناقلات يؤدي إلى انطلاق المنتجات البترولية في البيئة البحرية أو على اليابسة بشكل طبيعي أو بسبب عمل بشري، مما يؤدي إلى أضرار جسيمة وخسائر مالية. تعد صور الأقمار الصناعية إحدى الأدوات القوية المستخدمة حاليًا لالتقاط المعلومات الحيوية والحصول عليها من سطح الأرض. لكن التعقيد والكم الهائل من البيانات يجعل من الصعب على البشر معالجتها ويستغرق وقتًا طويلاً. ومع ذلك، مع تقدم تقنيات التعلم العميق، أصبحت العمليات الآن محوسبة للعثور على المعلومات الحيوية باستخدام صور الأقمار الصناعية في الوقت الحقيقي. طبقت هذه الورقة ثلاث خوارزميات للتعلم العميق لتصنيف صور الأقمار الصناعية، بما في ذلك ResNet50، وVGG19، وInceptionV4؛ تم تدريبهم واختبارهم على مجموعة بيانات صور الأقمار الصناعية مفتوحة المصدر لتحليل كفاءة الخوارزميات وأدائها وربط دقة التصنيف والدقة والاستدعاء ودرجة f1. وأظهرت النتيجة أن InceptionV4 يعطي أفضل دقة تصنيف بنسبة 97% للغيوم والصحراوية والمناطق الخضراء والمياه، يليه VGG19 بنسبة 96% تقريبًا وResNet50 بنسبة 93%. أثبتت النتائج أن خوارزمية InceptionV4 مناسبة لتصنيف الانسكابات النفطية وعدم الانسكابات باستخدام صور الأقمار الصناعية على مجموعة بيانات تم التحقق من صحتها.

تفاصيل المقالة

كيفية الاقتباس
1.
تصنيف الانسكابات النفطية على أساس الصور الفضائية باستخدام تقنيات التعلم العميق. Baghdad Sci.J [انترنت]. 25 فبراير، 2024 [وثق 18 مايو، 2024];21(2(SI):0684. موجود في: https://www.bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9767
القسم
article

كيفية الاقتباس

1.
تصنيف الانسكابات النفطية على أساس الصور الفضائية باستخدام تقنيات التعلم العميق. Baghdad Sci.J [انترنت]. 25 فبراير، 2024 [وثق 18 مايو، 2024];21(2(SI):0684. موجود في: https://www.bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9767

المراجع

Adegboye MA, Fung WK, Karnik A. Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches. Sensors (Switzerland): MDPI AG. 2019. https://doi.org/10.3390/s19112548.

Aljameel SS, Alomari DM, Alismail S, Khawaher F, Alkhudhair AA, Aljubran F, et al. An Anomaly Detection Model for Oil and Gas Pipelines Using Machine Learning. Computation. 2022;10(8):138. https://doi.org/10.3390/computation10080138.

Khalaf AB. Using remote sensing and geographic information systems to study the change detection in temperature and surface area of Hamrin Lake. Baghdad Sci. j. 2022;19(5):1130. https://dx.doi.org/10.21123/bsj.2022.6420

Lan D, Liang B, Bao C, Ma M, Xu Y, Yu C. Marine oil spill risk mapping for accidental pollution and its application in a coastal city. Mar. Pollut. Bull. . 2015;96(1):220-5. https://doi.org/10.1016/j.marpolbul.2015.05.023

Jafari R, Razvarz S, Gegov A, Vatchova B. Deep Learning for Pipeline Damage Detection: an Overview of the Concepts and a Survey of the State-of-the-Art 2020 2020 IEEE 10th International Conference on Intelligent Systems (IS), Varna, Bulgaria, 2020, pp. 178-182. https://doi.org/10.1109/IS48319.2020.9200137.

Jafarzadeh H, Mahdianpari M, Homayouni S, Mohammadimanesh F, Dabboor M. Oil spill detection from Synthetic Aperture Radar Earth observations: a meta-analysis and comprehensive review. GIsci Remote Sens. . 2021;58(7):1022-51. https://doi.org/10.1080/15481603.2021.1952542

Jafari R, Razvarz S, Gegov A, Vatchova B, editors. Deep Learning for Pipeline Damage Detection: an Overview of the Concepts and a Survey of the State-of-the-Art. 2020 IEEE 10th International Conference on Intelligent Systems (IS); 2020: IEEE. Varna, Bulgaria. 2020; pp. 178-182. https://doi.org/10.1109/IS48319.2020.9200137.

Xu J, Wang H, Cui C, Zhao B, Li B. Oil spill monitoring of shipborne radar image features using SVM and local adaptive threshold. Algorithms. 2020;13(3):69. https://doi.org/10.3390/a13030069.

Shaban M, Salim R, Abu Khalifeh H, Khelifi A, Shalaby A, El-Mashad S, et al. A deep-learning framework for the detection of oil spills from SAR data. Sensors. 2021;21(7):2351. https://doi.org/10.3390/s21072351

Huby AA, Sagban R, Alubady R, editors. Oil Spill Detection based on Machine Learning and Deep Learning: A Review. IICETA 2022 - 5th International Conference on Engineering Technology and its Applications. 2022: pp. 85-90. https://doi.org/10.1109/IICETA54559.2022.9888651.

Chhotaray G, Kulshreshtha A, editors. Defect detection in oil and gas pipeline: A machine learning application. Data Management, Analytics and Innovation: Proceedings of ICDMAI. 2018; Volume 2: pp. 177-184. https://doi.org/10.1007/978-981-13-1274-8_14.

Temitope Yekeen S, Balogun ALL, Wan Yusof KB. A novel deep learning instance segmentation model for automated marine oil spill detection. ISPRS. 2020;167:190-200. https://doi.org/10.1016/j.isprsjprs.2020.07.011.

Ghorbani Z, Behzadan AH, editors. Identification and instance segmentation of oil spills using deep neural networks. CSEE. 2020: Avestia Publishing. https://doi.org/10.11159/iceptp20.140.

Zeng K, Wang Y. A deep convolutional neural network for oil spill detection from spaceborne SAR images. Remote Sens. 2020;12(6). https://doi.org/10.3390/rs12061015.

Zhao X, Wang X, Du Z, editors. Research on Detection Method for the Leakage of Underwater Pipeline by YOLOv3. 2020 IEEE International Conference on Mechatronics and Automation, ICMA 2020; 2020 2020/10//: Institute of Electrical and Electronics Engineers Inc, Beijing, China. 2020; pp. 637-642. https://doi.org/10.1109/ICMA49215.2020.9233693.

Sheta A, Alkasassbeh M, Braik M, Ayyash HA. Detection of oil spills in SAR images using threshold segmentation algorithms. Int. J. Comput.2012;57(7).

Hu G, Xiao X, editors. Edge detection of oil spill using SAR image. 2013 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference; 2013: IEEE, Chengdu, China.2013;pp. 466-469. https://doi.org/10.1109/CSQRWC.2013.6657456.

Li Y, Yang X, Ye Y, Cui L, Jia B, Jiang Z, et al., editors. Detection of oil spill through fully convolutional network. Geo-Spatial Knowledge and Intelligence: 5th International Conference, GSKI 2017, Chiang Mai, Thailand, December 8-10, 2017, Revised Selected Papers, Part I 5; 2018. Springer. https://doi.org/10.1007/978-981-13-0893-2_38.

Ghorbani Z, Behzadan AH. Monitoring offshore oil pollution using multi-class convolutional neural networks. Environ. Pollut. . 2021;289. https://doi.org/10.1016/j.envpol.2021.117884.

Löw F, Stieglitz K, Diemar O. Terrestrial oil spill mapping using satellite earth observation and machine learning: A case study in South Sudan. J. Environ. Manage. . 2021;298. https://doi.org/10.1016/j.jenvman.2021.113424.

Basit A, Siddique MA, Sarfraz MS, editors. Deep Learning Based Oil Spill Classification Using Unet Convolutional Neural Network. IGARSS. 2021; pp. 3491-3494. https://doi.org/10.1109/IGARSS47720.2021.955364.

Shaban M, Salim R, Khalifeh HA, Khelifi A, Shalaby A, El-Mashad S, et al. A deep-learning framework for the detection of oil spills from SAR data. Sensors. 2021;21(7), 2351. https://doi.org/10.3390/s21072351.

Wang X, Liu J, Zhang S, Deng Q, Wang Z, Li Y, et al. Detection of Oil Spill Using SAR Imagery Based on AlexNet Model. Comput. Intell. Neurosci. .2021. https://doi.org/10.1155/2021/4812979.

Mehta N, Shah P, Gajjar P. Oil spill detection over ocean surface using deep learning: a comparative study. Mar. Syst. Ocean Technol. . 2021;16(3-4):213-20. https://doi.org/10.1007/s40868-021-00109-4

Said M, Hany M, Magdy M, Saleh O, Sayed M, Hassan YM, et al. Automated labeling of hyperspectral images for oil spills classification. Int. J. Adv. Comput. 2021;12(8). http://dx.doi.org/10.14569/IJACSA.2021.0120857

Asroni A, Ku-Mahamud KR, Damarjati C, Slamat HB. Arabic speech classification method based on padding and deep learning neural network. Baghdad Sci.J. 2021;18(2(Suppl.)):0925. https://dx.doi.org/10.21123/bsj.2021.18.2(Suppl.).0925

Topouzelis K, Psyllos A. Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS. 2012;68:135-43. https://doi.org/10.1016/j.isprsjprs.2012.01.005

ul Khairi D, Ayaz F, Saeed N, Ahsan K, Ali SZ. Analysis of deep convolutional neural network models for the fine-grained classification of vehicles. Future Transportation. 2023;3(1):133-49. https://doi.org/10.3390/futuretransp3010009

Adegun AA, Viriri S, Tapamo J-R. Review of deep learning methods for remote sensing satellite images classification: experimental survey and comparative analysis. J. Big Data. 2023;10(1):93. https://doi.org/10.1186/s40537-023-00772-x.

Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014. https://doi.org/10.48550/arXiv.1412.6980.

Sharma A, Kodipalli A, Rao T, editors. Performance of Resnet-16 and Inception-V4 Architecture to Identify Covid-19 from X-Ray Images. 2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON); 2022 2-4 Dec. 2022. Prayagraj, India, 2022, pp. 1-6. https://doi.org/10.1109/UPCON56432.2022.9986372.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556. 2014. https://doi.org/10.48550/arXiv.1409.1556.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.