الفعالية المضادة للبكتيريا لليزر الصمام الثنائي 940 نانومتر ضد البكتيريا المسببة لتسوس الاسنان

المؤلفون

  • Noha M. Jameel معهد الليزر للدراسات العليا, جامعة بغداد, العراق. https://orcid.org/0009-0004-4154-2196
  • Hanan J. Taher معهد الليزر للدراسات العليا, جامعة بغداد, العراق.

DOI:

https://doi.org/10.21123/bsj.2024.9041

الكلمات المفتاحية:

تأثير مبيد للجراثيم, كلوروهيكسيدين, تسوس الاسنان, التشعيع بالليزر, المكورات العقدية الطافرة

الملخص

تسوس الأسنان هو مرض معدي منتشر للغاية تسببه بكتيريا موجبة بشكل رئيسي المكورات العقدية الطافرة والتي تعتبر العامل المسبب الرئيسي لتسوس الأسنان. في السنوات الأخيرة ، كانت هناك زيادة هائلة في استخدام تقنية الليزر في الطب وطب الأسنان ، وقد ثبت أن لها تأثيرًا كبيرًا مضادًا للبكتيريا دون أي ضرر لأنسجة الفم. كان هدف الدراسة هو تقييم فعالية ليزر الصمام الثنائي كعامل مضاد للجراثيم ضد بكتيريا  بجرعات مختلفة. تم اجراء الدراسة على بكتريا المكورات العقدية بتركيز106 مستعمرة لكل مليلتر والتي تلقت اشعاع ليزر من ليزر ثنائي الصمام ذي الطول الموجي 940 نانو متر لفحص ثلاثة قدرات مختلفة ( 1 واط, 2 واط, و 3 واط) لمدة 30 ثانية من وقت التعرض, وتم استخدام الكلوروهيكسيدين كمجموعة تحكم ايجابية. تم حساب النمو البكتيري بعد 24 ساعة من التعرض لليزر.النتائج اظهرت فرق احصائي عالي بالمقارنة مع مجموعة التحكم السلبية بدون معالجة. كإستنتاج, الدراسة الحالية وضحت ان ليزر الصمام الثنائي 940 نانومتر كان ناجا وفعالا في تقليل نمو بكتيريا المكورات العقدية وبجرعات مختلفة.

المراجع

Kareem R, AJ Hussein. Cavity Disinfection Using Er, Cr: YSGG Laser Induced Photoacoustic Streaming Technique. Iraqi J Laser. 2022; 21(2): 41-7.

Sadony DM, Abozaid HE-s. Antibacterial effect of metallic nanoparticles on Streptococcus mutans bacterial strain with or without diode laser (970 nm). Bull Natl Res Cent. 2020; 44: 1-6. https://doi.org/10.1186/s42269-019-0262-z

Alejandra BM, Daniel OM. Virulence factors of Streptococcus mutans related to dental caries. Staphylococcus and Streptococcus. InteachOpen. 2020; 11: 9.

Robati M, Yousefimanesh H, Bagheri S. Effect of low-level diode laser on streptococcus mutans and lactobacillus acidophilus growth: An invitro study. J Oral Biol Craniofac Res. 2022; 12(3): 396-400. https://doi.org/10.1016/j.jobcr.2022.05.001

Qiu W, Zhou Y, Li Z, Huang T, Xiao Y, Cheng L, et al. Application of antibiotics/antimicrobial agents on dental caries. Biomed Res Int. 2020; 2020. https://doi.org/10.1155/2020/5658212

Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Primers. 2017; 3(1): 1-16. https://doi.org/10.1038/nrdp.2017.30

Chalisha TN, Febrianti NN, Kunarti S. Photodynamic Therapy 405 nm Diode Laser as Antibacterial for Cavity and Root Canal Sterilization. J Conserv Dent. 2021.

Coelho A, Amaro I, Rascão B, Marcelino I, Paula A, Saraiva J, et al. Effect of cavity disinfectants on dentin bond strength and clinical success of composite restorations—a systematic review of in vitro, in situ and clinical studies. Int J Mol Sci. 2020; 22(1): 353. https://doi.org/10.3390/ijms22010353

Liao Y, Brandt BW, Li J, Crielaard W, Van Loveren C, Deng DM. Fluoride resistance in Streptococcus mutans: a mini review. J Oral Microbiol. 2017; 9(1): 1344509. https://doi.org/10.1080/20002297.2017.1344509

Shallal LF, Ahmed MA. Experimental In vitro Study to Assess the Antibacte-rial Activity of Thymus vulgaris Oil on Streptococ-cus Sanguinis. J Baghdad Coll Dent. 2022; 34(4): 17-27. https://doi.org/10.26477/jbcd.v34i3.3214

Toma JJ, Aziz FH. Antibacterial Activity of Three Algal Genera against some Pathogenic Bacteria. Baghdad Sci J. 2023; 20(1): 0032-. https://doi.org/10.21123/bsj.2022.6818

Shareef AA, Hassan ZA, Kadhim MA, Al-Mussawi AA. Antibacterial Activity of Silver Nanoparticles Synthesized by Aqueous Extract of Carthamus oxycantha M. Bieb. Against Antibiotics Resistant Bacteria. Baghdad Sci J. 2022; 19: 0460. http://dx.doi.org/10.21123/bsj.2022.19.3.0460

Saleh BH, Ibrahim RN, Al-Ugaili DN. The Effect of Diode Laser on Viability and Antibiotic Sensitivity of Streptococcus mutans Isolated From Dental Caries. Iraqi J Sci. 2023; 64(2): 583-93. https://doi.org/10.24996/ijs.2023.64.2.8

Wang X, Cheng X, Liu X, Wang Z, Wang J, Guo C, et al. Bactericidal effect of various laser irradiation systems on Enterococcus faecalis biofilms in dentinal tubules: a confocal laser scanning microscopy study. Photomed Laser Surg. 2018; 36(9): 472-9. https://doi.org/10.1089/pho.2017.4430

Bahrololoomi Z, Fekrazad R, Zamaninejad S. Antibacterial effect of diode laser in pulpectomy of primary teeth. J Lasers Med Sci. 2017; 8(4): 197. https://doi.org/10.15171%2Fjlms.2017.36

Saafan A, Zaazou MH, Sallam MK, Mosallam O, El Danaf HA. Assessment of photodynamic therapy and nanoparticles effects on caries models. Open Access Maced. J Med Sci. 2018; 6(7): 1289. https://doi.org/10.3889%2Foamjms.2018.241

Tokuc M, Ozalp S, Topcuoglu N, Kulekci G. Bactericidal effect of 2780 nm Er, Cr: YSGG laser combined with 940 nm diode laser in Enterococcus faecalis elimination: a comparative study. Photobiomodulation Photomed. Laser Surg. 2019; 37(8): 489-94. https://doi.org/10.1089/photob.2018.4613

Asnaashari M, LT Ebad, S Shojaeian. Comparison of antibacterial effects of 810 and 980-nanometer diode lasers on enterococcus faecalis in the root canal system-an in vitro study. Laser Ther. 2016; 25(3): 209-214. https://doi.org/10.5978/islsm.16-OR-17

Tokuc M, Ozalp S, Topcuoglu N, Kulekci G. Bactericidal effect of 2780 nm Er, Cr: YSGG laser combined with 940 nm diode laser in Enterococcus faecalis elimination: a comparative study. Photobiomodul Photomed Laser Surg. 2019; 37(8): 489-494. https://doi.org/10.1089/photob.2018.4613

Coluzzi DJ. Fundamentals of lasers in dentistry: basic science, tissue interaction, and instrumentation. Dent Clin North Am. 2008;48(4) 751-70

Yao N, Zhang C, Chu C. Effectiveness of photoactivated disinfection (PAD) to kill enterococcus faecalis in planktonic solution and in an infected tooth model. Photomed Laser Surg. 2012; 30: 699–704.https://doi.org/10.1089/pho.2011.3216

Dixit S, Ahmad I, Hakami A, Gular K, Tedla JS, Abohashrh M. Comparison of anti-microbial effects of low-level laser irradiation and microwave diathermy on gram-positive and gram-negative bacteria in an in vitro model. Medicina. 2019; 55(7): 330. https://doi.org/10.3390/medicina55070330

Fonseca AS, Teixeira AF, Presta GA, Geller M, Valença SS, Paoli F. low intensity infrared laser effects on Escherichia coli cultures and plasmid DNA. Laser Phys. 2012; 22: 1635–1641. https://doi.org/10.1134/S1054660X12100076

Al-Mudallal NH, Al-Jumaily EF, Muhimen NA, Al-Shaibany AAW. Isolation and identification of mutan's streptococci bacteria from human dental plaque samples. Al-Nahrain J Sci. 2008; 11(3): 98-105.

Kung JC, Wang WH, Chiang YC, Yang Wang YT, Wang YC, Chen WC, et al. The antibacterial and remineralization effect of silver-containing mesoporous bioactive glass sealing and Er-yag laser on dentinal tubules treated in a Streptococcus mutans cultivated environment. Pharmaceuticals. 2021; 14(11): 1124. https://doi.org/10.3390/ph14111124

Philip N, Suneja B, Walsh L. Beyond Streptococcus mutans clinical implications of the evolving dental caries aetiological paradigms and its associated microbiome. Br Dent. J. 2018; 224(4): 219-25. https://doi.org/10.1038/sj.bdj.2018.81

Sadony DM, Montasser K. Evaluation and comparison between the bactericidal effect of diode laser irradiation (970 nm) and silver nanoparticles on Enterococcus faecalis bacterial strain (an in vitro study). Bull Natl Res Cent. 2019; 43(1): 1-6. https://doi.org/10.1186/s42269-019-0188-5

De Mandal S, Passari AK. Recent Advancement in Microbial Biotechnology. Agricultural and Industrial Approach. Elsevier. 2021.

Mustafa M Buraihi. The Photothermal Effect of 940nm Diode Laser on Enterococcus Faecalis Biofilm in Infected Root Canal. J Med Dent 2020; 8(7): 480-6.

Nammour S, El Mobadder M, Maalouf E, Namour M, Namour A, Rey G, et al. Clinical evaluation of diode (980 nm) laser-assisted nonsurgical periodontal pocket therapy: a randomized comparative clinical trial and bacteriological study. Photobiomodul Photomed Laser Surg. 2021; 39(1): 10-22. https://doi.org/10.1089/photob.2020.4818

El Mobadder M, Nammour S, Namour M, Namour A, Grzech Leśniak K. Disinfection Potential of 980 nm Diode Laser and Hydrogen Peroxide (3%) in Critical Probing Depths Periodontal Pockets: Retrospective Study. Life. 2022; 12(3): 370. https://doi.org/10.3390/life12030370

Hendi SS, Shiri M, Poormoradi B, Alikhani MY, Afshar S, Farmani A. Antibacterial Effects of a 940 nm Diode Laser With/Without Silver Nanoparticles Against Enterococcus faecalis. Lasers Med Sci. 2021; 12. https://doi.org/10.34172%2Fjlms.2021.73

Castelo-Baz P, Martín-Biedma B, Ruíz-Piñón M, Rivas-Mundiña B, Bahillo J, Perez-Estévez A, et al. Combined Sodium Hypochlorite and 940 nm Diode Laser Treatment Against Mature E. Faecalis Biofilms in vitro. J Lasers Med Sci. 2012; 3(3): 11 6-21.

Mohan PU, Uloopi K, Vinay C, Rao RC. In vivo comparison of cavity disinfection efficacy with APF gel, Propolis, Diode Laser, and 2% chlorhexidine in primary teeth. Contemp Clin Dent. 2016; 7(1): 45. https://doi.org/10.4103%2F0976-237X.177110

Hasaballah M, Abou El Fadl R, Sherief D, Abdelaziz A. Comparison of efficacy of diode laser and grape seeds extract as cavity disinfectants in primary teeth-an in vitro study. Egypt Dent J. 2021; 67(3): 1777-85. https://dx.doi.org/10.21608/edj.2021.62811.1504

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
الفعالية المضادة للبكتيريا لليزر الصمام الثنائي 940 نانومتر ضد البكتيريا المسببة لتسوس الاسنان . Baghdad Sci.J [انترنت]. [وثق 18 مايو، 2024];21(8). موجود في: https://www.bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9041