Some Properties of the Nonoscillatory Solutions of Second Order Linear Neutral Differential Equations

Adil Mahmood*, Hussain A.Mohamad**, Najlaa I.Tawfiq***

Date of acceptance 11/10/2004

Abstract: In this Paper the second order neutral differential equations are investigated, were we give some new sufficient conditions for all nonoscillatory solutions of equation (1.1) to converge to zero or to diverge.

1. Introduction

Consider the neutral differential equation

\[\left(x(t) + p(t)x(\tau(t)) \right)' + q(t)x(\sigma(t)) = 0, \quad t \geq t_0 \]

Under the standing hypotheses:

(1) \(p \in C[[t_0, \infty), (0, \infty)] \);

(2) \(\tau, \sigma \in C[[t_0, \infty), R], \sigma, \tau \) are strictly increasing and

\[\lim_{t \to \infty} \tau(t) = \infty \quad \text{and} \quad \lim_{t \to \infty} \sigma(t) = \infty \]

(3) \(q \in C[[t_0, \infty), R], q \) is continuous and \(q(t) \) not equivalent to zero.

Our aim is to obtain new sufficient conditions for nonoscillatory solution of equation (1.1) to converge to zero or diverges.

By a solution of equation (1.1) we means a continuous function \(x: [t_0, \infty) \to R \) such that \(x(t) + p(t)x(\tau(t)) \) is two times continuously differentiable, and \(x(t) \) satisfy equation (1.1) for all sufficiently large \(t \geq t_0 \). A solution of (1.1) is said to be oscillatory if it has infinite sequence of zeros tending to infinity, otherwise is said to be nonoscillatory.

The problem of oscillation and nonoscillation for neutral differential equations has received considerable attention in recent years, see e.g.,[1-8] and the references cited therein. However some results in this paper are new and the other ones in many cases complete the previous ones.

2. Some basic lemmas

The following lemmas will be used in the proof of the main results.

Lemma 2.1. Let \(f \in C^3(R, R) \) and
Then every bounded solution of equation (1.1) is either oscillatory or nonoscillatory such that \(\liminf_{t \to \infty} |x(t)| = 0 \)

Proof. Assume that \(x(t) \) be bounded and an eventually positive solution of (1.1). Then \(u^*(t) > 0 \) for all large \(t \). We have only the case:

\[
u'(t) > 0, \quad u(t) > 0 \quad \text{for} \quad t \geq t_1, t_0 \to \infty \to 0,\]

Integrating equation (3.1) from \(t_1 \) to \(t \) we obtain

\[
u'(t) - u'(t_1) = - \int_{t_1}^{t} q(s) x(\sigma(s)) ds
\]

as \(t \to \infty \), we get

\[
u'(t_1) = - \int_{t_1}^{t} q(s) x(\sigma(s)) ds
\]

(3.3) \[u'(t_1) = \int_{t_1}^{t} q(s) x(\sigma(s)) ds + 1 \]

thus, if \(\liminf_{t \to \infty} x(t) \neq 0 \), then this implies that \(\liminf_{t \to \infty} x(t) = c_0 \), and

\[x(t) > \frac{c_1}{2} \]

hence,

\[x(\sigma(t)) > \frac{c_1}{2} \]

for \(t \geq t_2 \geq t_1 \)

which gives a contradiction with (3.3).

Theorem 3.2. Suppose that

\[
p(t) \geq 0, \quad q(t) \leq 0, \quad \sigma(t) > t, \quad t \geq t_0
\]

and

(3.4) \[\int q(s) ds = \infty \]

Then every bounded solution of equation (1.1) is either oscillatory or nonoscillatory such that \(\liminf_{t \to \infty} |x(t)| = 0 \)

Proof. The proof is similar to that in theorem 3.1 and we omitted it.

Example 3.1. Consider the neutral delay differential equation:

\[
\frac{d^2}{dt^2} [x(t) + \frac{2}{l} x(2t)] - (1 + 3t^{-}) x(t^2/2) = 0, \quad t > 1
\]

all conditions of theorem 3.2 are satisfied , then all bounded solutions of the above equation are either oscillatory or
nonoscillatory with \(\liminf_{t \to \infty} |x(t)| = 0 \), for instance \(x(t) = \frac{c}{t} \) is such solution \((c \neq 0) \) is constant.

Theorem 3.3. Suppose, that

\[
1 < \lambda \leq p(t) \leq \beta, \quad q(t) \leq 0, \quad \tau(t) < t, \quad \tau(t) < \sigma(t), \quad t \geq t_0
\]

and (3.2) holds. Then all bounded solutions of equation (1.1) are either oscillatory or nonoscillatory tends to zero as \(t \to \infty \).

Proof. Assume that \(x(t) \) be nonoscillatory bounded solution of equation (1.1), without loss of generality assume that \(x(t) \) be an eventually positive. Then from equation (3.1) we get \(u'(t) \geq 0 \) for all large \(t \). We claim that

\[
u'(t) < 0, \quad u'(t) > 0 \quad \text{and lemma 2.1} u(t) \text{ is bounded, which is a contradiction since } u(t) \text{ is bounded. So we have only the case}
\]

\[
u'(t) \geq 0, \quad u'(t) < 0, \quad u(t) > 0
\]

for \(t \geq t \geq t_0 \) to show \(\lim_{t \to \infty} x(t) = 0 \), we have to show \(\limsup_{t \to \infty} x(\tau(t)) = 0 \), otherwise

\[
\limsup_{t \to \infty} x(\tau(t)) = c > 0
\]

we claim that \(\liminf_{t \to \infty} x(\tau(t)) = 0 \), otherwise \(\liminf_{t \to \infty} x(\tau(t)) = c_1 \)

which means that

\[
x(\tau(t)) > \frac{c}{2}, \quad x(\sigma(t)) > \frac{c}{2} \quad \text{for } t \geq t_2 \geq t_1.
\]

Form (3.1) we get

\[
u'(t) - u'(t) = -\int_{t_0}^{t} q(s) x(\sigma(s)) ds
\]

which as \(t \to \infty \), leads to a contradiction since \(\lim_{t \to \infty} u'(t) = \infty \), but \(u'(t) < 0 \) then clearly

\[
\liminf_{t \to \infty} x(\tau(t)) = 0 \quad \text{and}
\]

\[
\limsup_{t \to \infty} x(\tau(t)) = c
\]

so there exist two sequences \(\{s_n\}_{n=1}^{\infty}, \{s_i\}_{n=1}^{\infty} \) such that,

\[
\liminf_{t \to \infty} x(\tau(t)) = 0 \quad \text{and}
\]

\[
\limsup_{t \to \infty} x(\tau(t)) = c
\]

so, for any \(\epsilon > 0 \), there is \(N \in \mathbb{N} \) such that \(x(\tau(t_n)) < \epsilon \), \(x(\tau(t_n)) > \epsilon \) for each \(n \geq N \) and we can choose \(N \) such that \(x(t_n) < c + \epsilon \) for \(n \geq N \). Now if we choose the positive integers \(i, j \) such that \(s_j > t_i \) and estimate the dereference.

\[
u(s_j) - u(t_i) = x(s_j) + p(s_j) x(\tau(s_j)) - x(t_i) + p(t_i) x(\tau(t_i))
\]

\[
> p(s_j) x(\tau(s_j)) - x(t_i) + p(t_i) x(\tau(t_i))
\]

\[
> \lambda (c - \epsilon) - c - \epsilon - \beta = (\lambda - 1) c - \epsilon \in (1 + \lambda + \beta)
\]

We can choose \(\epsilon \) small enough such that \((\lambda - 1) c - \epsilon \in (1 + \lambda + \beta) > 0 \)

so that

\[
u(s_j) > u(t_i)
\]

where \(s_j > t_i \) which is a contradiction, since \(u(t) \) is decreasing. Hence

\[
\limsup_{t \to \infty} x(\tau(t)) = 0
\]

which is implies \(\lim_{t \to \infty} x(t) = 0 \).

Theorem 3.3. Suppose that

\[
0 < \lambda \leq p(t) \leq \lambda_2, \quad q(t) \leq 0 < \infty \quad \text{for } t \geq t_0.
\]

Then all nonoscillatory solutions of equation (1.1) are either tend to zero or \(|x(t)| \to \infty \) as \(t \to \infty \).

Proof. Assume that \(x(t) \) be nonoscillatory solution of equation (1.1), and suppose that \(x(t) \) be an eventually positive, and there exists \(t_0 \) such that \(x(\tau(t)) > 0 \) for to rve that

\[
eeither\lim_{t \to \infty} x(t) = \infty \quad \text{or} \lim_{t \to \infty} x(t) = 0.
\]

Suppose that \(\lim_{t \to \infty} x(t) \neq \infty \), then there exists \(t_1 \geq t_0 \) such that \(x(t) \) is bounded for \(t \geq t_1 \), and there exists \(c \) such that

\[
\limsup_{t \to \infty} x(t) = c \neq 0
\]

We claim that \(c = 0 \) otherwise, \(c > 0 \). Then by Lemma 2.2-\(a \) we have two cases:

Case 1.

\[
\lim_{t \to \infty} u(t) = \lim_{t \to \infty} u'(t) = x
\]
Which means \(u(t) \) is unbounded, which is a contradiction, since \(x(t) \) and \(p(t) \) are bounded.

Case 2.

\[
\lim_{t \to \infty} u'(t) = \lim_{t \to \infty} u'(t) = 0
\]

and we have

\[
\lim_{t \to \infty} \sup_{t \to \infty} x(t) = c > 0
\]

Then there exists a sequence \(\{t_n\}_{n=1}^\infty \) such that, \(\lim_{n \to \infty} t_n = \infty \), \(\lim_{n \to \infty} x(t_n) = c \), and

\[
\lim_{n \to \infty} u(t_n) = 0
\]

then

\[
u(t_n) = x(t_n) + p(t_n)x(\tau(t_n)) \geq x(t_n) + \lambda_1 x(\tau(t_n)),
\]

as \(n \to \infty \) we get

\[
\lim_{n \to \infty} u(t_n) - \lim_{n \to \infty} x(t_n) \leq \lim_{n \to \infty} x(\tau(t_n)) \leq \frac{-c}{\lambda_1} < 0,
\]

Which is a contradiction. Then either

\[
\lim_{t \to \infty} x(t) = \infty, \quad \text{or} \quad \lim_{t \to \infty} \sup_{t \to \infty} x(t) = 0
\]

, which implies that \(\lim_{t \to \infty} x(t) = 0 \).

References

بعض خواص الحلول غير المتذبذبة للمعادلات التفاضلية المحايدة من الرتبة الثانية

عادل محمود
حسين علي محمد
oneksi عيسى توفيق

استاذ قسم الرياضيات كلية التربية ابن الهيثم، جامعة بغداد.
** مدرس قسم الرياضيات كلية العلوم للبنات، جامعة بغداد.
*** مدرس مساعد قسم الرياضيات كلية العلوم للبنات، جامعة بغداد.

الخلاصة

لاحظ المعادلة التفاضلية المحايدة من الرتبة الثانية

\[[x(t) + p(t)x(\tau(t))]' + q(t)x(\sigma(t)) = 0, \quad t \geq t_0 \]

\[p \in C[[t_0, \infty), (0, \infty)]; \quad \tau, \sigma \in C[[t_0, \infty), R], \]

عندما

\[\lim_{t \to \infty} \sigma(t) = \infty, \quad \lim_{t \to \infty} \tau(t) = \infty \]

وأن
\[q(t) \text{ هي متزايدة} \quad \text{وأن} \quad \sigma, \tau \text{يتواصلان} \quad \text{وأن} \quad q(t) \text{مستمرة} \quad \text{وأن} \quad q \in C[[t_0, \infty), R]. \]

الهدف من هذا البحث هو إيجاد شروط كافية للحلول غير المتذبذبة للمعادلة (1.1) تضمن تقاربها إلى الصفر أو تكون متزائدة، حيث تم ملاحظة السلوك المحاذي لحلول المعادلة (1.1) ومعرفة الدوال المؤثرة على استقراره أو تباعده. يضمن البحث أربع نظريات ونتائج، كما تضمن أيضاً أمثلة توضيحية للنتائج التي تم الحصول عليها للتأكد على أن مجموعة الحلول التي تحقق الشروط المذكورة غير خالية.