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Abstract:

Throughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study
the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is
semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under
which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K

is a projective module. K is semihollow-lifting if and only if For every submodule A of K with % is hollow,

K . . .
then Y has a semiprojective cover.
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Introduction:
Let T be a ring with identity and F a unitary a decomposition V = V,@V, such that V,< kerf and

left module over T. A submodule E from a T- f|V,: V, — F is a semiprojective cover of F.
module F is called small on F (E « F) if whenever
a submodule S of Jwith F = E + S implies S = F ™. Proof: Since V is projective, there is a commutative

A submodule E of an T-module F is called diagram
semismall in F (E «<g F) if E=0 or E/V < F/V for .
every nonzero submodule V of E °. Let F be an T- "’
module and let VV,N be submodule of F such that h £
VcNcF. Kis called semicoessential submodule of =/

N in F (VSN in F) if g«s % 3. A non-zero T- )
module F is called a hollow module if every proper -

submodule of F is a small submodule of F *. An T- Q q
module F is called semihollow-lifting if for every

submodule H™ of F with g hollow, there exists
a submodule K of F such that F= K@K and 0

K Ssce H inF °. An T-module P is projective if  \jth exact row and column, as g is a small
and only if, for S, B are any two T-module and epimorphism and gh = f, since Q is projective, thus
Z:5—B is epimorphism and for any h splits, i.e. there is a monomorphism g:Q —V such
homomorphism L:P - 6B 3 a homomorphism that hg =1, then V = Img @Kerh. Now, put V;
h:P— Ssuchthat Zoh =1L °. L = Img and V, = kerh. But gh = f, fg thus V,E kerf.

A T-module U_ is cal!ed ser_nlpr_OJectlve cover Since f(V1) = f(V) = F then Vi— F — 0 is exact, 0
of a T-module F if, U is projective and 3 an is a projective cover from fg = ghg = q, it follows

epimorphism ¢: U —F with ker¢ < U. that ker(f[Vy) = g(kerq), a small submodules of g(Q)
Lemma 1 Suppose that F is a T-module such that F _ Vi then f|V,: V, — Fis a semiprojective cover

has a semiprojective cover. If V is projective with g
an  epimorphism f:V—F, then V has
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Proposition 2 Let K is a projective module. Then
the following statements are equivalent:
1.K is semihollow-lifting.

2.For every submodule A of K with % is hollow,

K o
then Y has a semiprojective cover.

Proof: 1=2 Assume that K is a semihollow-lifting
module. Let A be a submodule of K with % is

hollow. Thus there is a submodule A* of A such that
K= A"® A" and An A"« A”. But K is
projective, then by ™334 A™ is projective. Let

K — % — 0 be the natural epimorphism, thus,
mA** AT - % — 0 is an epimorphism, to see this,
let x+A € %. It is clear that m(x) = x+A. But x € K
and K=A"@® A", this implies that x=a"+a"", where
a€Aa"€eA”. Now,m(x)= m@@a+a ) =m(@")
+m@’) =mn@"), thus m@’) =x+A. Since
ker(m| A**) =AnA"andA”is projective, then
T A** AT — % — 0 is a semiprojective cover of
K

A «
2=1Let A be a submodule ofK such that — is

hollow and be the natural

let @K —
epimorphism. By(2),% has a semiprojective
cover.Thus by Lemmal, there exists
a decomposition K = K;@K; such that ¢|K»:K, — %
— 0 is a semiprojective cover and K;& Kere,this

implies that K;C A and ker(p| Ky) = A N KK K.
Then K is a semihollow-lifting module.

The following is an immediate corollary from
prop. 2

Corollary 3  The following statements are
equivalent for any ring T.
1.T is semihollow-lifting.

2. For every ideal ] of T such thatI] is hollow,

T o
then 3 has a semiprojective cover.

A T-module F is called semisimple if every
submodule of F is a direct summand of F °.

Let N and L be submodules of a module F, N
is called semisupplement of L in Fif F =N + L and
NNL<«sN .

Now, give new definitions:

A T-module F is called semimaximal
submodule if and only if the quotient F/D is
a semisimple module.
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A T-module F is called semilocal if F has
a unigue semimaximal submodule N which
contents all proper submodule of F. For example,
every semisupplement of a semimaximal
submodule in a module is a semilocal module.

Proposition 4 Assume that F is a nonzero T-
module, the following statements are equivalent:

1) F is semihollow and Rad(F) #F

2) F is semihollow and cyclic

3) Fis semilocal

Proof: 1=2 Since Rad(F) « F and F/ Rad(F)
semisimple then F is cyclic.

2=3=1 Clear.

Proposition 5 Assume that T is a ring. If T is
semihollow-lifting, then every semilocal T-module
F has semiprojective cover.

Proof: Suppose that T is semihollow-lifting. Let
F be a semilocal T-module, thus by prop. 4, F = Ta
for some a € F. Define : T —Ta, by ¢(t) = ta,
VteT. Itis clear that ¢ is an epimorphism. Then

by the first isomorphism theorem,L = Ta. It is
kero

T .
Ann(a) = Ta. ThIS

is semilocal. Now, put A=

clear that kerp = Ann(a). Thus

implies that )

Ann(a) so,% is semihollow. But T is semihollow-
lifting, thus 3 an ideal A” of T such that A'C A, T =
A®A"and An A"« A”. Let w:T — - be the
natural epimorphism, thus, mA**:A™ — % — 0 is
an epimorphism. It is clear that, ker(m| A**) = An
A", hence ker(m| A**) «¢ A”. Then | A**:A™ —
T R T

— Is a semiprojective cover of —. Hence F has

a semiprojective cover.

Let F be an T-module. Let K and N be
submodules of F. K is a strong semisupplement of N
in F if K is a semisupplement of N in Fand KN N is
a direct summand of N &

Theorem 6 Assume that F is a T-module, then F is
semihollow-lifting if and only if for every

submodule V of F with % is hollow has a strong
semisupplement in F.

Proof: Assume that F is a semihollow-lifting
module and V is a submodule of F such that % is

hollow. Hence 3 a submodule K of V such that
K S, V in Fand F = KOK*, for some K* € F. By
modular law, V=V N (KGK*) =K@ (VN K*). It
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is easy to show that F =V + K*. To show Vn
K* «s K*. Let (VNnK*)+D = K*,where D € K".
So F=K+ K=K+ (VnK*)+D. This implies
that F=V+D and = = 22= Y4 XK gy
K K K K

KCSeeV in F, thus F =D + K. Since F = KGK*
and D € K*, then D = K* and hence V n K* « K*.
Thus V has a strong semisupplement K* in F.

Conversely, Take V to be a submodule of F such

that 5 is hollow. Thus by our assumption there is

a strong semisupplement K of Vin F, then F =V +
KNNK«& K and V=(VNK)® L, where L. ©
F. Now, F=V+K=(VNK)+L+K=L+K. It
is clear that LN K = 0, so F = LK. To show that

L CeeeV in F. Let ¢ + 2 = 7

=D where D € F
containing L, thus V4+D=F. Hence F=(Vn
K)+ L+D. Since VNK <« F, then F=L+D.
But L <D, thus F=D. Then Fis semihollow-
lifting.

A T-module F is said to have the (finite)
exchange property if for any (finite) index set I,
whenever F @ N = @; Ai, for modules N and
Ai, thenF @ N =F @( ®;¢ Bi) for submodules
Bi C Ai°.

Lemma 7 Let F,, be a direct summand of a module
F such that F, has a finite exchange property. If
My € V € Fand V has a strong semisupplement in

F, then Fl has a strong semisupplement in Fi
0 0

Proof: Let K be a strong semisupplement of V in F,
then F=V+K VNK«K and V=(Vn
K)Y® L, where L<F. So F=V+K=(VnK)+
L+K=L+K and hence F = L& K. Since F, be
a direct summand of F, thus F = F, @F,, for some
F, < F. But F, has a finite exchange property, thus
Fo®F, =F, ®L'® K*,where " < Land K* < K.
Hence F=F, + V+K*. But F; < V< F, thus
F = V4 K" Since F =V + K, then by minimality
of K, K=K*. Now, put L;=F,®L".But F=
Fo ®L'@®K", thus F = F, ®L* @K and F = L;® K.

F_Li®K _ L, K+F, F _ Fo®L*
NOW,——F—O—F—O@F—Oand get, ——F—O

F Fo
®

K+F
- ® but Fp < Vand L < Vthus Fy + LF <
0
F \"% K+F \"% \% F
V and hence, — = — + S But—=—nNn—=
Fo 0 Fo k Fs) Fo Fo
V. Fo®L* . K+Fy \ _ Fo®L* __ (VNK)+F, v
o @ TR, )= Fo O, , then Fo
. . \'% \%
is a direct summand of - To show that -
0 0
K+F
8 as follows,

K K;f—:o define g: K — -

g(x) =x+F,, for all xeK. clearly g is an
epimorphism. But VNK<«gK, thus g(Vn

K)+F K+F
K)= (WVAK)*Fo o K+ 2 and hence “n
Fo Fo Fo

S
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K+F,
Fo 0
. vV .
semisupplement of ——in
0

K+F,
S

K+F,
Fo
F
Fo '

Then is

a strong

Proposition 8 Let F, be a direct summand of an T-
module F such that F, has the finite exchange
property. If F is a semihollow-lifting module, then

F . . ip-
s also semihollow-lifting.
0

Proof: Take a submodule B of F, such that F, < B
F

and 52 is a hollow module. From (third
Fo i

isomorphism theorem),g =~ 20 and thus = is

Fo
a hollow module. But F is semihollow-lifting, thus
by Th. 6, B has a strong semisupplement in F. Since
F, is a direct summand of F and has the finite

exchange property, then by Lemma 7, — has
0

a strong semisupplement in Fi Then by Th. 6, Fi

0

0

is a semihollow-lifting module.

Proposition 9 Assume that F is a semihollow-lifting
module that has a semimaximal submodule. Then F
has a semilocal submodule which is a direct
summand.

Proof: Let F be a semihollow-lifting module and
S be a semimaximal submodule of F. Then, % is

.. F . .
a semisimple module and hence S isa semihollow

module. Then, S has a strong semisupplement H in
FThus, F=S+H, SNH«KH and S=(Sn
H) @ L,where L & F.Hence F =H®L.ThenH is
a direct summand of F. But H is a semisupplement
of a semimaximal submodule, thus H is semilocal.

The following proposition gives
a decomposition of any projective hollow-lifting
module.

Proposition 10 Assume that F be T-module and let
X anon zero projective module, then there exists
a semimaximal submodule in X.

Proof: Assume Rad P = P. To show that every
finitely generated sub module NcP is zero. Let
{K.}\ be a family of finitely generated (cyclic)
modules in  of[F] and h:@, K, -P an
epimorphism. Since P projective, there exists g:P
—-®, K, with gh = idp with N, and also g(N),
finitely generated there is a finite subset Ec A with
g(N)c®g K, with the canonical projection
m@d) K, >Dg K, obtain an endomorphism f:
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g mh of P with nf = ng mh = ngh = n for all n eN.
Imf is contained in the finitely generated submodule
h(®k K,.) < P which is superfluous in P (since Rad
P=P) By %2 f e Jac(Endg(P)),i.e.1-f is an
isomorphism and NcKe(1-f) = 0.

A sequences {A,} of events is called a stable
sequence if for every event B has the limit
lim,_,., p(Ap,B)= Q(B) exists ™.

Theorem 11 Assume that | is a left ideal of T which
is contained uniquely in the semimaximal left ideal
F of T. Suppose T satisfies the following chain
condition. For every ce F(l), the sequence of left
ideals | € (I: o) € (I: «?) C.... stable. Then End
(T/1) is semilocal.

Proof: If F is a left T-module and f : F — F is an
epimorphism such that the sequence of submodules
ker fc ker f?2 < ... stable, thus a standard
argument displays that f is an isomorphism.
Furthermore, if F is a hollow module with the
property that every epimorphism from F to F is an
isomorphism, thus End (F) is semilocal, in that case,
non units would form an ideal. Thus it is enough to
display that, for any endomorphism f: T/I-T/I, the
above sequence becomes stable. If f € End (T/1),
then3ceF(l)suchthatft+ ) =tc+1VvVt+le
T/1. Then for any n > 1, Ker f™ = (I: ¢c™)/I and since
the sequence (I: ¢) € (I: ¢?) < .. stable, the proof is
complete.

A T-module F is said to be an SLE module if its
endomorphism ring End(F) is semilocal.

Theorem 12 Assume that F be an indecomposable
T-module. if F is an SLE-module, then F has the
finite exchange property.

Proof: Assume that S = End(F) is a semilocal ring
and let f € S. But S is semilocal, then either for 1 —
fis a unit in S. If f is unit, thus 1% = 1z € fS and
0p2 = 0p € (1-)S. thus, by 2 @114 F has the
finite exchange property.

Proposition 13 Let F be a projective semihollow-
lifting T-module. Then F=B;@ B, where B; is
semilocal and B, is semihollow-lifting.

Proof: Take the projective semihollow-lifting
module F. By prop.10, F has a semimaximal
submodule. Then by prop. 9,F has a semilocal
submodule which is a direct summand of F say B;.
Thus by Theorem11, End(B;) is semilocal. Then by
Theorem12, B; has the finite exchange property.
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Thus by prop. 8, Bi is semihollow-lifting. But By is
1

a direct summand ofF, thus F =B;@®B,, for
some B,< F. By the (second isomorphism theorem),

Bi = B, Then B, is semihollow-lifting.

1

Recall that a T-module F is called semilifting
module or SD1-module if for every submodule V of
F, there exists a direct summand Y of F such that
Y Cece VINF >,

Corollary 14 Let Thbe an indecomposable ring.
Then the following are equivalent:

1.T is semilocal.

2.T is semilifting.

3.T is semihollow-lifting.

Proof: 1=2=3: Clear.

3=1Take T is semihollow-lifting. Since T is
projective, thus by prop. 14, we have T = B;@® B,,
where B; is semilocal and B, is semihollow-lifting.
Since R is indecomposable and B;# 0, then B, = 0
and hence T = By, Thus T is semilocal.

Conclusion:

This paper study the relation between
semihollow-lifting modules and semiprojective
covers.  Also, give a condition under which
a quotient of a semihollow-lifting module having
a semiprojective cover.

1. Let K is a projective module. K is semihollow-
lifting if and only if For every submodule A of K

with % is hollow, then EA has a semiprojective

cover.
2. T is semihollow-lifting if and only if For every

ideal J of T such that I] is hollow, then I] has

a semiprojective cover.

3. If T is semihollow-lifting, then every semilocal
T-module has semiprojective cover.

4. A module F is semihollow-lifting if and only if

for every submodule V of F with % is hollow has

a strong semisupplement in F.
5. Let Fy be a direct summand of an T-module F
such that Fg has the finite exchange property. If F is

a semihollow-lifting  module, then is

0
semihollow-lifting.

6. Assume that F is a semihollow-lifting module
that has a semimaximal submodule. Then F has
a semilocal submodule which is a direct summand.
7. Let F be a projective semihollow-lifting T-
module. Then F=B;@ B,, where B; is semilocal
and B; is semihollow-lifting.
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